

Why Reduce Dimensionality?

1. Reduces time complexity: Less computation
2. Reduces space complexity: Less parameters
3. Saves the cost of observing the feature
4. Simpler models are more robust on small datasets
5. More interpretable; simpler explanation
6. Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions

Feature Selection vs Extraction

- Feature selection: Choosing k<d important features, ignoring the remaining $\mathrm{d}-\mathrm{k}$

Subset selection algorithms

- Feature extraction: Project the original $x_{i}, i=1, \ldots, d$ dimensions to new $\mathrm{k}<\mathrm{d}$ dimensions, $\mathrm{z}_{\mathrm{j}}, \mathrm{j}=1, \ldots, \mathrm{k}$

Principal components analysis (PCA), linear discriminant analysis (LDA), factor analysis (FA)

Subset Selection

- There are $2^{\text {d }}$ subsets of d features
- Forward search: Add the best feature at each step \square Set of features F initially \varnothing.
\square At each iteration, find the best new feature
$j=\operatorname{argmin}_{i} E\left(F \cup x_{i}\right)$
\square Add x_{j} to F if $E\left(F \cup x_{j}\right)<E(F)$
- Hill- climbing $O\left(d^{2}\right)$ algorithm
- Backward search: Start with all features and remove one at a time, if possible.
- Floating search (Add k, remove I)

Principal Components Analysis (PCA)

- Find a low- dimensional space such that when x is projected there, information loss is minimized.
- The projection of x on the direction of w is: $z=w^{\top} x$
- Find w such that $\operatorname{Var}(z)$ is maximized
$\operatorname{Var}(\mathrm{z})=\operatorname{Var}\left(\mathbf{w}^{\top} \mathbf{x}\right)=\mathrm{E}\left[\left(\mathrm{w}^{\top} \mathbf{x}-\mathrm{w}^{\top} \boldsymbol{\mu}\right)^{2}\right]$
$=E\left[\left(w^{\top} x-w^{\top} \mu\right)\left(w^{\top} x-w^{\top} \mu\right)\right]$
$=E\left[\mathrm{w}^{\top}(\mathrm{x}-\mu)(\mathrm{x}-\mu)^{\top} \mathrm{W}\right]$
$=w^{\top} E\left[(x-\mu)(x-\mu)^{\top}\right] w=w^{\top} \sum w$
where $\operatorname{Var}(x)=E\left[(x-\mu)(x-\mu)^{\top}\right]=\Sigma$
- Maximize $\operatorname{Var}(z)$ subject to $\|w\|=1$

$$
\max _{w_{1}} w_{1}^{\top} \Sigma w_{1}-\alpha\left(w_{1}^{\top} w_{1}-1\right)
$$

$\sum \mathrm{w}_{1}=\alpha \mathrm{W}_{1}$ that is, w_{1} is an eigenvector of Σ
Choose the one with the largest eigenvalue for $\operatorname{Var}(z)$ to be max

- Second principal component: $\operatorname{Max} \operatorname{Var}\left(z_{2}\right)$, s.t., $\left\|w_{2}\right\|=1$ and orthogonal to w_{1}

$$
\max _{w_{2}} w_{2}^{\top} \Sigma w_{2}-\alpha\left(w_{2}^{\top} w_{2}-1\right)-\beta\left(w_{2}^{\top} w_{1}-0\right)
$$

$\Sigma \mathrm{w}_{2}=\alpha \mathrm{w}_{2}$ that is, w_{2} is another eigenvector of Σ and so on.

What PCA does

$$
\mathrm{z}=\mathrm{W}^{\top}(\mathrm{x}-\mathrm{m})
$$

where the columns of W are the eigenvectors of Σ, and m is sample mean
Centers the data at the origin and rotates the axes

How to choose k?

- Proportion of Variance (PoV) explained

$$
\frac{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{\mathrm{k}}}{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{\mathrm{k}}+\cdots+\lambda_{\mathrm{d}}}
$$

when λ_{i} are sorted in descending order

- Typically, stop at PoV>0.9
- Scree graph plots of PoV vs k, stop at "elbow"

(b) Proportion of variance explained

Principle Component Analysis PCA
 Given a set of points $\left\{x_{1}, x_{2}, \cdots, x_{N}\right\}, x_{i} \in R^{d}$

- We are looking for a linear projection: a linear combination of orthogonal basis vectors

What is the projection that minimizes the reconstruction error?

$$
E=\sum_{i}\left\|x_{i}-A c_{i}\right\|
$$

Principle Component Analysis
 PCA

- Given a set of points

$$
\left\{x_{1}, x_{2}, \cdots, x_{N}\right\}, x_{i} \in R^{d}
$$

- Center the points: compute

$$
\begin{aligned}
\mu & =\frac{1}{N} \sum_{i} x_{i} \\
P & =\left[x_{1}-\mu, x_{2}-\mu, \cdots, x_{N}-\mu\right], x_{i} \in R^{d}
\end{aligned}
$$

- Compute covariance matrix $Q=P P^{T}$
- Compute the eigen vectors for $\mathrm{Q} \longrightarrow Q e_{k}=\lambda_{k} e_{k}$
- Eigenvectors are the orthogonal basis we are looking for

Singular Value Decomposition

- SVD: If \mathbf{A} is a real m by n matrix then there exist orthogonal matrices
$\mathbf{U}(m \cdot m)$ and $\mathbf{V}(n \cdot n)$ such that
$\mathbf{U t}^{\mathbf{t}} \mathbf{A V}=\Sigma=\operatorname{diag}(\boldsymbol{\sigma} \mathbf{1}, \boldsymbol{\sigma} \mathbf{2}, \ldots, \boldsymbol{\sigma p}) \quad p=\min \{m, n\}$

$$
\mathbf{U}^{\mathrm{t}} \mathbf{A V}=\Sigma \quad \mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\mathrm{t}}
$$

- Singular values: Non negative square roots of the eigenvalues of $\mathbf{A}^{t} \mathbf{A}$.

Denoted $\sigma_{i}, i=1, \ldots, n$

- $\mathbf{A}^{t} \mathbf{A}$ is symmetric \Rightarrow eigenvalues and singular values are real.
- Singular values arranged in decreasing order.
$A^{t} A=\left(U \sum V^{t}\right)^{t}\left(U \sum V^{t}\right)=V \sum^{t} U^{t} U \sum V^{t}=V \sum^{t} \sum V^{t}=V \sum^{2} V^{-1}$
$\left(A^{t} A\right) V=V \Sigma^{2}$
$\left(A^{t} A\right) v=v \lambda$

SVD for PCA

- SVD can be used to efficiently compute the image basis
$P P^{t}=\left(U \Sigma V^{t}\right)\left(U \sum V^{t}\right)^{t}=U \sum V^{t} V \sum^{t} U^{t}=U \sum^{t} \sum U^{t}=U \sum^{2} U^{-1}$
$\left(P P^{t}\right) U=U \Sigma^{2}$
$\left(P P^{t}\right) v=v \lambda$
- U are the eigen vectors (basis)
- Most important thing to notice: Distance in the eigen- space is an approximation to the correlation in the original space

$$
\left\|x_{i}-x_{j}\right\| \approx\left\|c_{i}-c_{j}\right\|
$$

PCA

- Most important thing to notice: Distance in the eigen- space is an approximation to the correlation in the original space

$$
\left\|x_{i}-x_{j}\right\| \approx\left\|c_{i}-c_{j}\right\|
$$

Eigenface

- Use PCA and subspace projection to perform face recognition
- How to describe a face as a linear combination of face basis
- Matthew Turk and Alex Pentland "Eigenfaces for Recognition" 1991

Face Recognition - Eigenface

■ MIT Media Lab - Face Recognition demo page http:// vismod.media.mit.edu/vismod/ demos/facerec/

Factor Analysis

- Find a small number of factors z, which when combined generate x :

$$
x_{i}-\mu_{i}=v_{i 1} z_{1}+v_{i 2} z_{2}+\ldots+v_{i k} z_{k}+\varepsilon_{i}
$$

where $\mathrm{z}_{\mathrm{j}}, \mathrm{j}=1, \ldots, \mathrm{k}$ are the latent factors with $E\left[z_{j}\right]=0, \operatorname{Var}\left(z_{j}\right)=1, \operatorname{Cov}\left(z_{i}, z_{j}\right)=0, i \neq j$,
ε_{i} are the noise sources
$\mathrm{E}\left[\varepsilon_{\mathrm{i}}\right]=\psi_{\mathrm{i}}, \operatorname{Cov}\left(\varepsilon_{\mathrm{i}}, \varepsilon_{\mathrm{j}}\right)=0, \mathrm{i} \neq \mathrm{j}, \operatorname{Cov}\left(\varepsilon_{\mathrm{i}}, \mathrm{z}_{\mathrm{j}}\right)=0$, and v_{ij} are the factor loadings

PCA vs FA

- PCA From x to z

$$
z=W^{\top}(x-\mu)
$$

- FA

From z to x
$\mathrm{x}-\mu=\mathrm{V} z+\varepsilon$
variables
\mathbf{X}

 w
new
variables
Z

PCA

x_{2}

Factor Analysis

- In FA, factors z_{j} are stretched, rotated and translated to generate x

Multidimensional Scaling

- Given pairwise distances between N points,

$$
d_{i j}, i, j=1, \ldots, N
$$

place on a low- dim map s.t. distances are preserved.

- $z=g(x \mid \theta) \quad$ Find θ that min Sammon stress

$$
\begin{aligned}
E(\theta \mid X) & =\sum_{r, s} \frac{\left(\left\|z^{r}-z^{s}\right\|-\left\|x^{r}-x^{s}\right\|\right)^{2}}{\left\|x^{r}-x^{s}\right\|^{2}} \\
& =\sum_{r, s} \frac{\left(\left\|g\left(x^{r} \mid \theta\right)-g\left(x^{s} \mid \theta\right)\right\|-\left\|x^{r}-x^{s}\right\|\right)^{2}}{\left\|x^{r}-x^{s}\right\|^{2}}
\end{aligned}
$$

Map of Europe by MDS

Linear Discriminant Analysis

- Find a low- dimensional space such that when x is projected, classes are well- separated.
- Find w that maximizes
$J(w)=\frac{\left(m_{1}-m_{2}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}$

$m_{1}=\frac{\sum_{t} w^{\top} x^{t} r^{t}}{\sum_{t} r^{t}} \quad s_{1}^{2}=\sum_{t}\left(w^{\top} x^{t}-m_{1}\right)^{2} r^{t}$
- Between- class scatter:

$$
\begin{aligned}
\left(m_{1}-m_{2}\right)^{2} & =\left(w^{\top} m_{1}-w^{\top} m_{2}\right)^{2} \\
& =w^{\top}\left(m_{1}-m_{2}\right)\left(m_{1}-m_{2}\right)^{\top} w \\
& =w^{\top} S_{B} w \text { where } S_{B}=\left(m_{1}-m_{2}\right)\left(m_{1}-m_{2}\right)^{\top}
\end{aligned}
$$

- Within- class scatter:

$$
\begin{aligned}
\mathrm{S}_{1}^{2} & =\sum_{t}\left(w^{\top} x^{t}-m_{1}\right)^{2} r^{t} \\
& =\sum_{t} w^{\top}\left(x^{t}-m_{1}\right)\left(x^{t}-m_{1}\right)^{\top} w r^{t}=w^{\top} S_{1} w \\
\text { where } S_{1} & =\sum_{t}\left(x^{t}-m_{1}\right)\left(x^{t}-m_{1}\right)^{\top} r^{t} \\
S_{1}^{2}+S_{1}^{2} & =w^{\top} S_{w} w \text { where } S_{w}=S_{1}+S_{2}
\end{aligned}
$$

Fisher's Linear Discriminant

- Find w that max

$$
J(w)=\frac{w^{\top} S_{B} w}{w^{\top} S_{w} w}=\frac{\left|w^{\top}\left(m_{1}-m_{2}\right)\right|^{2}}{w^{\top} S_{w} w}
$$

- LDA soln:

$$
\mathrm{w}=\mathrm{c} \cdot \mathrm{~S}_{\mathrm{w}}^{-1}\left(\mathrm{~m}_{1}-\mathrm{m}_{2}\right)
$$

- Parametric soln:

$$
\begin{aligned}
\mathrm{w}= & \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right) \\
& \text { when } \mathrm{p}\left(\mathrm{x} \mid \mathrm{C}_{\mathrm{i}}\right) \sim \mathrm{N}\left(\mu_{\mathrm{i}}, \Sigma\right)
\end{aligned}
$$

$K>2$ Classes

- Within- class scatter:

$$
\mathrm{S}_{w}=\sum_{i=1}^{k} \mathrm{~S}_{\mathrm{i}} \quad \mathrm{~S}_{\mathrm{i}}=\sum_{\mathrm{r}^{\mathrm{t}}} \mathrm{t}^{\mathrm{t}}\left(\mathrm{x}^{\mathrm{t}}-\mathrm{m}_{\mathrm{i}}\right)\left(\mathrm{x}^{\mathrm{t}}-\mathrm{m}_{\mathrm{i}}\right)^{\top}
$$

- Between- class scatter:

$$
S_{B}=\sum_{i=1}^{K} N_{i}\left(m_{i}-m\right)\left(m_{i}-m\right)^{\top} \quad m=\frac{1}{K} \sum_{i=1}^{K} m_{i}
$$

- Find W that max

$$
J(W)=\frac{\left|W^{\top} S_{B} W\right|}{\left|W^{\top} S_{W} W\right|} \quad \begin{aligned}
& \text { The largest eigenvectors of } S_{W}^{-1} S_{B} \\
& \text { Maximum rank of } K-1
\end{aligned}
$$

Separating Style and Content

- Objective: Decomposing two factors using linear methods
\square Content: which character
\square Style : which font
- "Bilinear models"
- J. Tenenbaum and W. Freeman "Separating Style and Content with Bilinear Models" Neural computation 2000

Classification			
A	B	C	D E
A	B	C	D E
A	B	C	D E
4	B	C	D E
A	B	C	D E
$B C_{A} E \quad D$			

B

Extrapolation				
A	B	C	D	E
A	B	C	D	E
A	B	C	D	E
4	B	C	\mathcal{O}	E
A	B	C	D	E
?	?	C	D	E

Bilinear Models

- Symmetric bilinear model

$$
y^{s c}=\sum_{i, j} w_{i j} a_{i}^{s} b_{j}^{c}
$$

Bilinear models

$$
y^{s c}=A^{s} b^{c}
$$

- Asymmetric bilinear model: use style dependent basis

Head pose as style factor person as content

Person as style factor pose as content

